Conjunto de Cantor

El conjunto de Cantor es, además de una curiosidad matemática, una paradoja, en el sentido usual, es decir que contradice una intuición universal relativa a tamaño de objetos geométricos. Se construye así: ● El primer paso es tomar el intervalo [0, 1]. ● El segundo paso es quitarle su tercio interior, es decir el intervalo abierto (1/3; 2/3). ● El tercero es quitar a los dos segmentos restantes sus respectivos tercios interiores, es decir los intervalos abiertos (1/9; 2/9) y (7/9; 8/9). ● Los pasos siguientes son idénticos: quitar el tercio de todos los intervalos que quedan. El proceso no tiene fin.

Enciclopedia Universal. 2012.

Mira otros diccionarios:

  • Conjunto de Cantor — De izquierda a derecha, sucesivos pasos de la construcción geométrica del conjunto de Cantor. Para ilustrar la definición numérica se destacan cuatro puntos del conjunto (0, 2/3, 1 y 1/4) y su expresión en base 3. El conjunto de Cantor, llamado… …   Wikipedia Español

  • Conjunto de Smith-Volterra-Cantor — Después de eliminarse los intervalos negros, los puntos blancos que quedan forman un conjunto que no es denso en ninguna parte, de medida 1/2. En matemáticas, el conjunto de Smith Volterra Cantor (SVC) o el conjunto gordo de Cantor (en inglés fat …   Wikipedia Español

  • Conjunto no numerable — Un conjunto no numerable es un conjunto que no puede ser enumerado, es decir, un conjunto tal que no existe una función sobreyectiva del conjunto de los número naturales a dicho conjunto. Es decir, un conjunto A es no numerable si no existe… …   Wikipedia Español

  • Conjunto numerable — En matemáticas, un conjunto es numerable o contable cuando sus elementos pueden ponerse en correspondencia uno a uno con el conjunto de los números naturales o un subconjunto finito del mismo. Algunos autores toman una definición alternativa de… …   Wikipedia Español

  • Conjunto — Los diversos polígonos en la imagen constituyen un conjunto. Algunos de los elementos del conjunto, además de ser polígonos son regulares. La colección de estos últimos los polígonos regulares en la imagen es otro conjunto, en particular, un… …   Wikipedia Español

  • Conjunto potencia — En matemáticas, dado un conjunto S, se llama conjunto potencia o conjunto de partes de S (se denota por P(S) o 2S) al conjunto formado por todos los subconjuntos posibles de S. En la teoría de conjuntos basada en los Axiomas de Zermelo Fraenkel,… …   Wikipedia Español

  • Conjunto singular — Se llama conjunto singular en la teoría de conjuntos a todo conjunto que se contiene a sí mismo. Este tipo de conjuntos es la base de ciertas paradojas matemáticas que, como la paradoja de Russell o la paradoja del conjunto de todos los conjuntos …   Wikipedia Español

  • Cantor, Georg — (3 mar. 1845, San Petersburgo, Rusia–6 ene. 1918, Halle, Alemania). Matemático alemán, fundador de la teoría de conjuntos. Fue el primero en examinar sistemas de números, como los números racionales y los números reales, sistemáticamente como… …   Enciclopedia Universal

  • Función de Cantor — En matemáticas, la función de Cantor, llamada así en honor de Georg Cantor, es un ejemplo de función matemática que es continua pero no absolutamente continua. También se la conoce como la escalera del Diablo. La función de Cantor guarda una… …   Wikipedia Español

  • Georg Cantor — Nacimiento 3 de marzo de 1845 San Petersburgo, Rusia Fallecimiento …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.